Login de Membros
Nome 
 
Senha 
    Lembre-me  
Post Info TOPIC: Problema de concurso


Member

Estado: Offline
Mensagens: 15
Data:
Problema de concurso


:chew::chew::chew::chew::chew::chew::chew::chew::chew::chew::chew::chew:


Os pesos de quatro pacotes são 1,3,5 e 7 quilos , respectivamente .qual dos valores abaixo não poderá ser , em quilos , o peso total de uma combinação desses pacotes?

a) 9 b) 10 c) 12 d)13 e) 14

__________________


Prof.

Estado: Offline
Mensagens: 219
Data:

Olá Antunes

Acho que a questão está bichada. Veja só:

No enunciado não é dito que precisamos, necessariamente, escolher um pacote de cada tipo (podemos, então, escolher ZERO de algum tipo). Ou seja, como temos o pacote de peso 1kg podemos ter qualquer peso total (inteiro, é claro). Para termos um peso total de 9 kg é só pegarmos nove pacotes de 1kg e nenhum dos outros, e assim por diante.

Agora, se for especificado que devemos, necessariamente, escolher no mínimo um de cada, o menor peso total seria 1+3+5+7=16kg (veja que todas respostas são menores que 16, portanto, nesta segunda situação, impossíveis de serem encontradas).

Assim vemos que, ou todas alternativas são respostas, ou nenhuma alternativa é resposta.

Atenciosamente
Prof. Caju
WebMaster cursinho.hpg.com.br

__________________


Member

Estado: Offline
Mensagens: 15
Data:

Olá Caju .

Vc está de parabéns ....excelente fórum , criativo e de bons participantes .

Agora quanto a questão ....devo informá-lo que foi proposta no concurso ANFAD/95 E A RESPOSTA é 14 (letra e do Gab. ) .

Condordo com o seu ponto de vista ... enunciado equivocado .

Um abraço,

Antunes.





__________________


Prof.

Estado: Offline
Mensagens: 219
Data:

Olá Antunes

Achei o enunciado meio rebuscado. Mas, depois de você dizer que a resposta é 14 consegui ver a lógica pedida. Hehehe, e o pior é que o enunciado está correto... eu que devia estar dormindo na hora de ler.... o que eu não havia entendido é o seguinte: é dito que existem QUATRO pacotes, e não mais do que isso. Ou seja, não podemos utilizar mais do que uma unidade de cada peso mas podemos utilizar ZERO unidades de algum deles. Assim dá pra resolver a questão:

a) 9kg = 1 pacote 5kg + 1 pacote 3kg + 1 pacote 1kg
b) 10kg = 1 pacote 7kg + 1 pacote 3kg
c) 12kg = 1 pacote 7kg + 1 pacote 5kg
d) 13kg = 1 pacote 7kg + 1 pacote 5kg + 1 pacote 1kg
e) 14kg = por exclusão é a resposta, mas se você tentar todas as combinações não achará nenhuma.

Eu me embabanei no enunciado na primeira lida, mas vendo agora não há por que ser anulada...

Obrigado pelo elogio :-)

Atenciosamente
Prof. Caju
WebMaster cursinho.hpg.com.br

__________________
Página 1 de 1  sorted by
 
Resposta rápida

Faça o loggin para postar respostas rápidas

Tweet this page Post to Digg Post to Del.icio.us


Create your own FREE Forum
Report Abuse
Powered by ActiveBoard